Cat Drivers Las Vegas World Travel Guide



Rhodium is Element 045 an Element of the World

Elements of the World

Rhodium Element 045

Rhodium,  45Rh

Rhodium powder pressed melted.jpg

General properties

Name, symbol

rhodium, Rh




silvery white metallic

Rhodium in the periodic table

Hydrogen (diatomic nonmetal)

Helium (noble gas)

Lithium (alkali metal)

Beryllium (alkaline earth metal)

Boron (metalloid)

Carbon (polyatomic nonmetal)

Nitrogen (diatomic nonmetal)

Oxygen (diatomic nonmetal)

Fluorine (diatomic nonmetal)

Neon (noble gas)

Sodium (alkali metal)

Magnesium (alkaline earth metal)

Aluminium (post-transition metal)

Silicon (metalloid)

Phosphorus (polyatomic nonmetal)

Sulfur (polyatomic nonmetal)

Chlorine (diatomic nonmetal)

Argon (noble gas)

Potassium (alkali metal)

Calcium (alkaline earth metal)

Scandium (transition metal)

Titanium (transition metal)

Vanadium (transition metal)

Chromium (transition metal)

Manganese (transition metal)

Iron (transition metal)

Cobalt (transition metal)

Nickel (transition metal)

Copper (transition metal)

Zinc (transition metal)

Gallium (post-transition metal)

Germanium (metalloid)

Arsenic (metalloid)

Selenium (polyatomic nonmetal)

Bromine (diatomic nonmetal)

Krypton (noble gas)

Rubidium (alkali metal)

Strontium (alkaline earth metal)

Yttrium (transition metal)

Zirconium (transition metal)

Niobium (transition metal)

Molybdenum (transition metal)

Technetium (transition metal)

Ruthenium (transition metal)

Rhodium (transition metal)

Palladium (transition metal)

Silver (transition metal)

Cadmium (transition metal)

Indium (post-transition metal)

Tin (post-transition metal)

Antimony (metalloid)

Tellurium (metalloid)

Iodine (diatomic nonmetal)

Xenon (noble gas)

Caesium (alkali metal)

Barium (alkaline earth metal)

Lanthanum (lanthanide)

Cerium (lanthanide)

Praseodymium (lanthanide)

Neodymium (lanthanide)

Promethium (lanthanide)

Samarium (lanthanide)

Europium (lanthanide)

Gadolinium (lanthanide)

Terbium (lanthanide)

Dysprosium (lanthanide)

Holmium (lanthanide)

Erbium (lanthanide)

Thulium (lanthanide)

Ytterbium (lanthanide)

Lutetium (lanthanide)

Hafnium (transition metal)

Tantalum (transition metal)

Tungsten (transition metal)

Rhenium (transition metal)

Osmium (transition metal)

Iridium (transition metal)

Platinum (transition metal)

Gold (transition metal)

Mercury (transition metal)

Thallium (post-transition metal)

Lead (post-transition metal)

Bismuth (post-transition metal)

Polonium (post-transition metal)

Astatine (metalloid)

Radon (noble gas)

Francium (alkali metal)

Radium (alkaline earth metal)

Actinium (actinide)

Thorium (actinide)

Protactinium (actinide)

Uranium (actinide)

Neptunium (actinide)

Plutonium (actinide)

Americium (actinide)

Curium (actinide)

Berkelium (actinide)

Californium (actinide)

Einsteinium (actinide)

Fermium (actinide)

Mendelevium (actinide)

Nobelium (actinide)

Lawrencium (actinide)

Rutherfordium (transition metal)

Dubnium (transition metal)

Seaborgium (transition metal)

Bohrium (transition metal)

Hassium (transition metal)

Meitnerium (unknown chemical properties)

Darmstadtium (unknown chemical properties)

Roentgenium (unknown chemical properties)

Copernicium (transition metal)

Ununtrium (unknown chemical properties)

Flerovium (post-transition metal)

Ununpentium (unknown chemical properties)

Livermorium (unknown chemical properties)

Ununseptium (unknown chemical properties)

Ununoctium (unknown chemical properties)




ruthenium ← rhodium → palladium

Atomic number (Z)


Group, block

group 9, d-block


period 5

Element category

  transition metal

Standard atomic weight (±) (Ar)


Electron configuration

[Kr] 4d8 5s1

per shell

2, 8, 18, 16, 1

Physical properties



Melting point

2237 K ​(1964 °C, ​3567 °F)

Boiling point

3968 K ​(3695 °C, ​6683 °F)

Density near r.t.

12.41 g/cm3

when liquid, at m.p.

10.7 g/cm3

Heat of fusion

26.59 kJ/mol

Heat of vaporization

493 kJ/mol

Molar heat capacity

24.98 J/(mol·K)

vapor pressure

P (Pa)




1 k

10 k

100 k

at T (K)







Atomic properties

Oxidation states

6, 5, 4, 3, 2, 1,[2] −1, −3 ​(an amphoteric oxide)


Pauling scale: 2.28

Ionization energies

1st: 719.7 kJ/mol
2nd: 1740 kJ/mol
3rd: 2997 kJ/mol

Atomic radius

empirical: 134 pm

Covalent radius

142±7 pm


Crystal structure

face-centered cubic (fcc)

Face-centered cubic crystal structure for rhodium

Speed of sound thin rod

4700 m/s (at 20 °C)

Thermal expansion

8.2 µm/(m·K) (at 25 °C)

Thermal conductivity

150 W/(m·K)

Electrical resistivity

43.3 nΩ·m (at 0 °C)

Magnetic ordering


Young's modulus

380 GPa

Shear modulus

150 GPa

Bulk modulus

275 GPa

Poisson ratio


Mohs hardness


Vickers hardness

1100–8000 MPa

Brinell hardness

980–1350 MPa

CAS Number



Discovery and first isolation

William Hyde Wollaston (1804)

Most stable isotopes of rhodium





DE (MeV)




16.1 d




0.089, 0.353,



4.34 d







0.306, 0.545



3.3 y




0.127, 0.198,



3.7 y




0.475, 0.631,
0.697, 1.046



207 d




0.826, 1.301






0.475, 0.628







35.36 h


0.247, 0.260,



0.306, 0.318

Decay modes in parentheses are predicted, but have not yet been observed

| references

Rhodium is a chemical element with symbol Rh and atomic number 45. It is a rare, silvery-white, hard, and chemically inert transition metal. It is a member of the platinum group. It has only one naturally occurring isotope, 103Rh. Naturally occurring rhodium is usually found as the free metal, alloyed with similar metals, and rarely as a chemical compound in minerals such as bowieite and rhodplumsite. It is one of the rarest and most valuable precious metals.

Rhodium is a noble metal, resistant to corrosion, found in platinum or nickel ores together with the other members of the platinum group metals. It was discovered in 1803 by William Hyde Wollaston in one such ore, and named for the rose color of one of its chlorine compounds, produced after it reacted with the powerful acid mixture aqua regia.

The element's major use (approximately 80% of world rhodium production) is as one of the catalysts in the three-way catalytic converters in automobiles. Because rhodium metal is inert against corrosion and most aggressive chemicals, and because of its rarity, rhodium is usually alloyed with platinum or palladium and applied in high-temperature and corrosion-resistive coatings. White gold is often plated with a thin rhodium layer to improve its appearance while sterling silver is often rhodium-plated for tarnish resistance.

Rhodium detectors are used in nuclear reactors to measure the neutron flux level.




William Hyde Wollaston

Rhodium (Greek rhodon (ῥόδον) meaning "rose") was discovered in 1803 by William Hyde Wollaston,[4] soon after his discovery of palladium.[5][6][7] He used crude platinum ore presumably obtained from South America.[8] His procedure involved dissolving the ore in aqua regia and neutralizing the acid with sodium hydroxide (NaOH). He then precipitated the platinum as ammonium chloroplatinate by adding ammonium chloride (NH
4Cl). Most other metals like
copper, lead, palladium and rhodium were precipitated with zinc. Diluted nitric acid dissolved all but palladium and rhodium. Of these, palladium dissolved in aqua regia but rhodium did not,[9] and the rhodium was precipitated by the addition of sodium chloride as Na
2O. After being washed with ethanol, the rose-red precipitate was reacted with zinc, which
displaced the rhodium in the ionic compound and thereby released the rhodium as free metal.[10]

After the discovery, the rare element had only minor applications; for example, by the turn of the century, rhodium-containing thermocouples were used to measure temperatures up to 1800 °C.[11][12] The first major application was electroplating for decorative uses and as corrosion-resistant coating.[13] The introduction of the three-way catalytic converter by Volvo in 1976 increased the demand for rhodium. The previous catalytic converters used platinum or palladium, while the three-way catalytic converter used rhodium to reduce the amount of NOx in the exhaust.[14][15][16]




No. of electrons/shell



2, 8, 15, 2



2, 8, 18, 16, 1



2, 8, 18, 32, 15, 2



2, 8, 18, 32, 32, 15, 2 (predicted)

Rhodium is a hard, silvery, durable metal that has a high reflectance. Rhodium metal does not normally form an oxide, even when heated.[17] Oxygen is absorbed from the atmosphere only at the melting point of rhodium, but is released on solidification.[18] Rhodium has both a higher melting point and lower density than platinum. It is not attacked by most acids: it is completely insoluble in nitric acid and dissolves slightly in aqua regia.

Chemical properties

Wilkinson's catalyst

Rhodium belongs to group 9 of the periodic table, but the configuration of electrons in the outermost shells is atypical for the group. This anomaly is also observed in the neighboring elements, niobium (41), ruthenium (44), and palladium (46).

Oxidation states
of rhodium








3, Rh


4, RhO


5, Sr



The common oxidation state of rhodium is +3, but oxidation states from +0 to +6 are also observed.[19]

Unlike ruthenium and osmium, rhodium forms no volatile oxygen compounds. The known stable oxides include Rh
, RhO
2O, Na
3, Sr
6 and Sr
[20] Halogen compounds are known in nearly the full range of possible oxidation states. Rhodium(III) chloride, rhodium(IV) fluoride, rhodium(V) fluoride and rhodium(VI) fluoride are examples. The lower oxidation states are stable only in the presence of ligands.[21]

The best-known rhodium-halogen compound is the Wilkinson's catalyst chlorotris(triphenylphosphine)rhodium(I). This catalyst is used in the hydroformylation or hydrogenation of alkenes.[22]


Main article: Isotopes of rhodium

Naturally occurring rhodium is composed of only one isotope, 103Rh. The most stable radioisotopes are 101Rh with a half-life of 3.3 years, 102Rh with a half-life of 207 days, 102mRh with a half-life of 2.9 years, and 99Rh with a half-life of 16.1 days. Twenty other radioisotopes have been characterized with atomic weights ranging from 92.926 u (93Rh) to 116.925 u (117Rh). Most of these have half-lives shorter than an hour, except 100Rh (20.8 hours) and 105Rh (35.36 hours). It has numerous meta states, the most stable being 102mRh (0.141 MeV) with a half-life of about 2.9 years and 101mRh (0.157 MeV) with a half-life of 4.34 days (see isotopes of rhodium).[23]

In isotopes weighing less than 103 (the stable isotope), the primary decay mode is electron capture and the primary decay product is ruthenium In isotopes greater than 103, the primary decay mode is beta emission and the primary product is palladium.[24]


Rhodium is one of the rarest elements in the Earth's crust, comprising an estimated 0.0002 parts per million (2 × 10−10).[25] Its rarity affects its price and its use in commercial applications.

Mining and price

Rh price evolution.

The industrial extraction of rhodium is complex because the ores mixed with other metals such as palladium, silver, platinum, and gold and there are very few rhodium-bearing minerals. It is found in platinum ores and extracted as a white inert metal that is difficult to fuse. Principal sources are located in South Africa; in river sands of the Ural Mountains; and in North America, including the copper-nickel sulfide mining area of the Sudbury, Ontario, region. Although the quantity at Sudbury is very small, the large amount of processed nickel ore makes rhodium recovery cost-effective.

The main exporter of rhodium is South Africa (approximately 80% in 2010) followed by Russia.[26] The annual world production is 30 tonnes. The price of rhodium is highly variable. In 2007, rhodium cost approximately eight times more than gold, 450 times more than silver, and 27,250 times more than copper by weight. In 2008, the price briefly rose above $10,000 per ounce ($350,000 per kilogram). The economic slowdown of the 3rd quarter of 2008 pushed rhodium prices sharply back below $1,000 per ounce ($35,000 per kilogram); the price rebounded to $2,750 by early 2010 ($97,000 per kilogram) (more than twice the gold price), but in late 2013, the prices were less than $1000.

Political and financial problems led to very low oil prices and oversupply, causing most metals to drop in price. The economies of China, India and other emerging countries slowed in 2014 and 2015. In 2014 alone, 23,722,890 motor vehicles were produced in China, excluding motorbikes. This resulted in a rhodium price of 740.00 US-$per Troy ounce (31.1 grams) in late November 2015.[27]

Used nuclear fuels

Main article: Synthesis of precious metals

Rhodium is a fission product of uranium-235; therefore, each kilogram of fission product contains a significant amount of the lighter platinum group metals including rhodium. Used nuclear fuel is a potential source of rhodium. However, the extraction is complex and expensive, and the presence of rhodium radioisotopes requires a period of cooling storage for multiple half-lives of the longest-lived isotope (about 10 years). These factors make the source unattractive and no large-scale extraction has been attempted.[28][29][30]


The primary use of this element is in automobiles as a catalytic converter, changing harmful unburned hydrocarbons, carbon monoxide, and nitrogen oxide exhaust emissions into less noxious gases. Of 30,000 kg of rhodium consumed worldwide in 2012, 81% (24,300 kg) went into and 8,060 kg was recovered from this application. About 964 kg of rhodium was used in the glass industry, mostly for production of fiberglass and flat-panel glass, and 2,520 kg was used in the chemical industry.[26]


In 2012, 81% of the world production of rhodium was consumed in automobile catalytic converters.[26] Rhodium is preferable to the other platinum metals in the reduction of nitrogen oxides to nitrogen and oxygen:[31]

2 NO
xx O
2 + N

Rhodium catalysts are used in a number of industrial processes, notably in catalytic carbonylation of methanol to produce acetic acid by the Monsanto process.[32] It is also used to catalyze addition of hydrosilanes to molecular double bonds, a process important in manufacture of certain silicone rubbers.[33] Rhodium catalysts are also used to reduce benzene to cyclohexane.[34]

The complex of a rhodium ion with BINAP is a widely used chiral catalyst for chiral synthesis, as in the synthesis of menthol.[35]

Ornamental uses

Rhodium finds use in jewelry and for decorations. It is electroplated on white gold and platinum to give it a reflective white surface at time of sale, after which the thin layer wears away with use. This is known as rhodium flashing in the jewelry business. It may also be used in coating sterling silver to protect against tarnish (silver sulfide, Ag2S, produced from atmospheric hydrogen sulfide, H2S). Solid (pure) rhodium jewelry is very rare, more because of the difficulty of fabrication (high melting point and poor malleability) than because of the high price.[36] The high cost ensures that rhodium is applied only as an electroplate.

Rhodium has also been used for honors or to signify elite status, when more commonly used metals such as silver, gold or platinum were deemed insufficient. In 1979 the Guinness Book of World Records gave Paul McCartney a rhodium-plated disc for being history's all-time best-selling songwriter and recording artist.[37]

Other uses

Rhodium is used as an alloying agent for hardening and improving the corrosion resistance[17] of platinum and palladium. These alloys are used in furnace windings, bushings for glass fiber production, thermocouple elements, electrodes for aircraft spark plugs, and laboratory crucibles.[38] Other uses include:

  • Electrical contacts, where it is valued for small electrical resistance, small and stable contact resistance, and great corrosion resistance.[39]
  • Rhodium plated by either electroplating or evaporation is extremely hard and useful for optical instruments.[40]
  • Filters in mammography systems for the characteristic X-rays it produces.[41]
  • Rhodium neutron detectors are used in combustion engineering nuclear reactors to measure neutron flux levels – this method requires a digital filter to determine the current neutron flux level, generating three separate signals: immediate, a few seconds delay, and a minute delay, each with its own signal level; all three are combined in the rhodium detector signal. The three Palo Verde nuclear reactors each have 305 rhodium neutron detectors, 61 detectors on each of five vertical levels, providing an accurate 3D "picture" of reactivity and allowing fine tuning to consume the nuclear fuel most economically.[42]


A 78 g sample of rhodium


Cross section of a metal-core catalytic converter


Rhodium-plated white gold wedding ring


Rhodium foil and wire


Being a noble metal, pure rhodium is inert. However, chemical complexes of rhodium can be reactive. Median lethal dose (LD50) for rats is 198 mg of rhodium chloride (RhCl
3) per kilogram of body weight.
[43] Like the other noble metals, all of which are too inert to occur as chemical compounds in nature, rhodium has not been found to serve any biological function. In elemental form, the metal is harmless.[44]

People can be exposed to rhodium in the workplace by inhalation. The Occupational Safety and Health Administration (OSHA) has specified the legal limit (Permissible exposure limit) for rhodium exposure in the workplace at 0.1 mg/m3 over an 8-hour workday, and the National Institute for Occupational Safety and Health (NIOSH) has set the recommended exposure limit (REL), at the same level. At levels of 100 mg/m3, rhodium is immediately dangerous to life and health.[45] For soluble compounds, the PEL and REL are both 0.001 mg/m3.[46]

See also


  1. Standard Atomic Weights 2013. Commission on Isotopic Abundances and Atomic Weights
  2. "Rhodium: rhodium(I) fluoride compound data". Retrieved 2007-12-10. 
  3. Lide, D. R., ed. (2005). "Magnetic susceptibility of the elements and inorganic compounds". CRC Handbook of Chemistry and Physics (PDF) (86th ed.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5. 
  4. Wollaston, W. H. (1804). "On a New Metal, Found in Crude Platina". Philosophical Transactions of the Royal Society of London. 94: 419–430. doi:10.1098/rstl.1804.0019. 
  5. Griffith, W. P. (2003). "Rhodium and Palladium – Events Surrounding Its Discovery". Platinum Metals Review. 47 (4): 175–183. 
  6. Wollaston, W. H. (1805). "On the Discovery of Palladium; With Observations on Other Substances Found with Platina". Philosophical Transactions of the Royal Society of London. 95: 316–330. doi:10.1098/rstl.1805.0024. 
  7. Usselman, Melvyn (1978). "The Wollaston/Chenevix controversy over the elemental nature of palladium: A curious episode in the history of chemistry". Annals of Science. 35 (6): 551–579. doi:10.1080/00033797800200431. 
  8. Lide, David R. (2004). CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data. Boca Raton: CRC Press. pp. 4–26. ISBN 0-8493-0485-7. 
  9. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 1113. ISBN 0-08-037941-9. 
  10. Griffith, W. P. (2003). "Bicentenary of Four Platinum Group Metals: Osmium and iridium – events surrounding their discoveries". Platinum Metals Review. 47 (4): 175–183. 
  11. Hulett, G. A.; Berger, H. W. (1904). "VOLATILIZATION OF PLATINUM". Journal of the American Chemical Society. 26 (11): 1512. doi:10.1021/ja02001a012. 
  12. Measurement, Astm Committee E.2.0. on Temperature (1993). "Platinum Type". Manual on the use of thermocouples in temperature measurement. ASTM International. ISBN 978-0-8031-1466-1. 
  13. Kushner, Joseph B. (1940). "Modern rhodium plating". Metals and Alloys. 11: 137–140. 
  14. Amatayakul, W; Ramnäs, Olle (2001). "Life cycle assessment of a catalytic converter for passenger cars". Journal of Cleaner Production. 9 (5): 395. doi:10.1016/S0959-6526(00)00082-2. 
  15. Heck, R; Farrauto, Robert J. (2001). "Automobile exhaust catalysts". Applied Catalysis A: General. 221: 443. doi:10.1016/S0926-860X(01)00818-3. 
  16. Heck, R; Gulati, Suresh; Farrauto, Robert J. (2001). "The application of monoliths for gas phase catalytic reactions". Chemical Engineering Journal. 82: 149. doi:10.1016/S1385-8947(00)00365-X. 
  17. Cramer, Stephen D.; Covino, Jr., Bernard S., eds. (1990). ASM handbook. Materials Park, OH: ASM International. pp. 393–396. ISBN 0-87170-707-1. 
  18. Emsley, John (2001). Nature's Building Blocks ((Hardcover, First Edition) ed.). Oxford University Press. p. 363. ISBN 0-19-850340-7. 
  19. Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils (1985). Lehrbuch der Anorganischen Chemie (91–100 ed.). Walter de Gruyter. pp. 1056–1057. ISBN 3-11-007511-3. 
  20. Reisner, B. A.; Stacy, A. M. (1998). "Sr 3ARhO 6 (A = Li, Na): Crystallization of a Rhodium(V) Oxide from Molten Hydroxide". Of the American Chemical Society. 120 (37): 9682–9989. doi:10.1021/ja974231q. 
  21. Griffith, W. P. The Rarer Platinum Metals, John Wiley and Sons: New York, 1976, p. 313.
  22. Osborn, J. A.; Jardine, F. H.; Young, J. F.; Wilkinson, G. (1966). "The Preparation and Properties of Tris(triphenylphosphine)halogenorhodium(I) and Some Reactions Thereof Including Catalytic Homogeneous Hydrogenation of Olefins and Acetylenes and Their Derivatives". Journal of the Chemical Society A: 1711–1732. doi:10.1039/J19660001711. 
  23. Audi, G.; Bersillon, O.; Blachot, J.; Wapstra, A.H. (2003). "The NUBASE Evaluation of Nuclear and Decay Properties". Nuclear Physics A. Atomic Mass Data Center. 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001. 
  24. David R. Lide (ed.), Norman E. Holden in CRC Handbook of Chemistry and Physics, 85th Edition CRC Press. Boca Raton, Florida (2005). Section 11, Table of the Isotopes.
  25. Barbalace, Kenneth, "Table of Elements". Environmental; retrieved 2007-04-14.
  26. Loferski, Patricia J. (2013). "Commodity Report: Platinum-Group Metals" (PDF). United States Geological Survey. Retrieved 2012-07-16. 
  27. Rhodium price (German)
  28. Kolarik, Zdenek; Renard, Edouard V. (2005). "Potential Applications of Fission Platinoids in Industry" (PDF). Platinum Metals Review. 49 (2): 79. doi:10.1595/147106705X35263. 
  29. Kolarik, Zdenek; Renard, Edouard V. (2003). "Recovery of Value Fission Platinoids from Spent Nuclear Fuel. Part I PART I: General Considerations and Basic Chemistry" (PDF). Platinum Metals Review. 47 (2): 74–87. 
  30. Kolarik, Zdenek; Renard, Edouard V. (2003). "Recovery of Value Fission Platinoids from Spent Nuclear Fuel. Part II: Separation Process" (PDF). Platinum Metals Review. 47 (2): 123–131. 
  31. Shelef, M.; Graham, G. W. (1994). "Why Rhodium in Automotive Three-Way Catalysts?". Catalysis Reviews. 36 (3): 433–457. doi:10.1080/01614949408009468. 
  32. Roth, James F. (1975). "Rhodium Catalysed Carbonylation of Methanol" (PDF). Platinum Metals Review. 19 (1 January): 12–14. 
  33. Heidingsfeldova, M. & Capka, M. (2003). "Rhodium complexes as catalysts for hydrosilylation crosslinking of silicone rubber". Journal of Applied Polymer Science. 30 (5): 1837. doi:10.1002/app.1985.070300505. 
  34. Halligudi, S. B.; et al. (1992). "Hydrogenation of benzene to cyclohexane catalyzed by rhodium(I) complex supported on montmorillonite clay". Reaction Kinetics and Catalysis Letters. 48 (2): 547. doi:10.1007/BF02162706. 
  35. Akutagawa, S. (1995). "Asymmetric synthesis by metal BINAP catalysts". Applied Catalysis A: General. 128 (2): 171. doi:10.1016/0926-860X(95)00097-6. 
  36. Fischer, Torkel; Fregert, S; Gruvberger, B; Rystedt, I (1984). "Contact sensitivity to nickel in white gold". Contact Dermatitis. 10 (1): 23–24. doi:10.1111/j.1600-0536.1984.tb00056.x. PMID 6705515. 
  37. "Hit & Run: Ring the changes". The Independent. London. 2008-12-02. Retrieved 2009-06-06. 
  38. Lide, David R (2004). CRC handbook of chemistry and physics 2004–2005: a ready-reference book of chemical and physical data (85th ed.). Boca Raton: CRC Press. pp. 4–26. ISBN 0-8493-0485-7. 
  39. Weisberg, Alfred M. (1999). "Rhodium plating". Metal Finishing. 97 (1): 296–299. doi:10.1016/S0026-0576(00)83088-3. 
  40. Smith, Warren J. (2007). "Reflectors". Modern optical engineering: the design of optical systems. McGraw-Hill. pp. 247–248. ISBN 978-0-07-147687-4. 
  41. McDonagh, C P; et al. (1984). "Optimum x-ray spectra for mammography: choice of K-edge filters for tungsten anode tubes". Phys. Med. Biol. 29 (3): 249. Bibcode:1984PMB....29..249M. doi:10.1088/0031-9155/29/3/004. 
  42. Sokolov, A. P.; Pochivalin, G. P.; Shipovskikh, Yu. M.; Garusov, Yu. V.; Chernikov, O. G.; Shevchenko, V. G. (1993). "Rhodium self-powered detector for monitoring neutron fluence, energy production, and isotopic composition of fuel". Atomic Energy. 74 (5): 365–367. doi:10.1007/BF00844622. 
  43. Landolt, Robert R.; Berk Harold W.; Russell, Henry T. (1972). "Studies on the toxicity of rhodium trichloride in rats and rabbits". Toxicology and Applied Pharmacology. 21 (4): 589–590. doi:10.1016/0041-008X(72)90016-6. PMID 5047055. 
  44. Leikin, Jerrold B.; Paloucek Frank P. (2008). Poisoning and Toxicology Handbook. Informa Health Care. p. 846. ISBN 978-1-4200-4479-9. 
  45. "CDC - NIOSH Pocket Guide to Chemical Hazards - Rhodium (metal fume and insoluble compounds, as Rh)". Retrieved 2015-11-21. 
  46. "CDC - NIOSH Pocket Guide to Chemical Hazards - Rhodium (soluble compounds, as Rh)". Retrieved 2015-11-21. 

External links

Look up rhodium in Wiktionary, the free dictionary.

Wikimedia Commons has media related to Rhodium.



Rhodium compounds



Organorhodium(I) compounds


Organorhodium(II) compunds













Precious metals

Precious metal alloys

Base metals

Mineral gemstones

Organic gemstones

Other natural objects




Rhodium is Element 045 an Element of the World
Elements of the World